Cách giải phương trình logarit bằng máy tính nhanh nhất
1. Logarit là gì?
– Khái niệm
Logarit được viết tắt là Log là phép toán nghịch đảo của lũy thừa. Theo đó, Logarit của một số a là số mũ của cơ số b (lũy thừa của một giá trị cố định), phải được nâng lên để tạo ra số a đó. Nói cách khác, Logarit là một phép nhân có số lần lặp đi lặp lại.
Ví dụ: Logarit cơ số 5 của 125 là 3 vì 125 là 5 lũy thừa 3: 125 = 5 × 5 × 5 = 53 hay Log5125=3. Từ đó, dễ thấy Logarit cơ số 5 của 125 bằng 3.
Lưu ý, lũy thừa của một số dương với số mũ bất kỳ luôn cho kết quả là một số dương. Ví dụ, Logarit cơ số 3 của 8 là 2 hay Logarit cơ số 4 của là 16 là 2.
2. Phương trình lôgarit cơ bản
• logax = b ⇔ x = ab (0 < a ≠ 1).
• loga f(x) = loga g(x)

3. Cách tính cơ bản
Đối với bài toán logarit, bạn tính theo công thức trong hình bên dưới:

– Một số cơ số đặc biệt
Có 3 cơ số đặc biệt đó là: b = e (hằng số vô tỉ xấp xỉ bằng 2,71828); b = 10; b = 2 trong đó:
+ Logarit cơ số 10 hay Logarit thập phân có dạng Log X, Log10X thường được dùng trong kỹ thuật, sinh học, thiên văn học.
+ Logarit cơ số 2 hay Logarit nhị phân có dạng Ld X, Log X, Lg X, Log2X thường được dùng trong khoa học máy tính, lý thuyết thông tin, lý thuyết âm nhạc, nhiếp ảnh.
+ Logarit cơ số e hay Logarit tự nhiên có dạng Ln X, Log X thường được dùng trong toán học, vật lý, hóa học, thống kê, kinh tế học,…

4. Cách giải phương trình logarit bằng máy tính
Phương trình logarit hay phương trình bất kỳ đều có thể sử dụng chức năng TABLE hoặc SHIFT + SOLVE để tìm nghiệm gần đúng. Để thực hiện, chúng ta tiến hành theo 2 bước như sau:
- Dùng chức năng TABLE để tìm khoảng chứa nghiệm.
- Dùng tiếp TABLE để ra nghiệm gần đúng hoặc dùng chức năng SHIFT + SOLVE để tìm nghiệm gần đúng.
Dưới đây tôi hướng dẫn các bạn cách chỉ dùng chức năng TABLE để tìm nghiệm gần đúng. Vì hàm mũ và logarit giá trị biến thiên rất nhanh. Nên cách này có ưu điểm hơn SHIFT SOLVE trong giải phương trình logarit hoặc mũ. Chúng ta cùng tìm hiểu kỹ hơn qua một ví dụ sau.
5. Ví dụ minh họa
Tính tích các nghiệm của phương trình sau

Hướng dẫn:
Bấm MODE 8 nhập hàm số

Chúng ta dò cột f(x) để tìm những khoảng hàm số đổi dấu. Chẳng hạn như hình trên thì khoảng (1;2) hàm số đổi dấu từ âm sang dương. Vậy trên khoảng này hàm số có ít nhất một nghiệm. Khoảng (0;1) có thể có nghiệm. Ta thấy các giá trị tiếp theo như f(3), f(4)… có xu hướng tăng (hàm đồng biến). Vậy ta chỉ còn 2 khoảng cần xét.
Bấm AC và dấu = để làm lại các bước trên nhưng với khoảng (0;1) và (1;2).
Với khoảng (0;1) ta chọn START 0 END 1 STEP 1/29. Ta được khoảng (0;0,0344) có thể có nghiệm.

Tiếp tục như vậy với khoảng (0;0,0344) ta chọn START 0 END 0,0344 STEP 0,0344/29 ta được nghiệm gần đúng thứ nhất.

Muốn nghiệm chính xác hơn nữa ta lặp lại với STRAT 0,0189 END 0,0201 STEP (0,0201-0,0189)/29, ta được:

Như vậy nghiệm gần đúng thứ nhất là 0,01997586207.
Hoàn toàn tương tự như vậy với khoảng (1;2). Sau vài ba lần bấm máy tôi thu được một nghiệm gần đúng nữa là 1,852482759

Bây giờ thì bấm tích hai số này với nhau thôi phải không nào.
So với các phương án ta thấy gần với phương án C nhất. Vậy ta chọn C.